

ADVANCED GCE

MATHEMATICS Core Mathematics 4 4724

Candidates answer on the Answer Booklet

OCR Supplied Materials:

- 8 page Answer Booklet
- List of Formulae (MF1)

Other Materials Required: None

Tuesday 13 January 2009 Morning

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- This document consists of 4 pages. Any blank pages are indicated.

1 Simplify
$$\frac{20-5x}{6x^2-24x}$$
. [3]

2

2 Find
$$\int x \sec^2 x \, dx$$
. [4]

- 3 (i) Expand $(1+2x)^{\frac{1}{2}}$ as a series in ascending powers of x, up to and including the term in x^3 . [3]
 - (ii) Hence find the expansion of $\frac{(1+2x)^{\frac{1}{2}}}{(1+x)^3}$ as a series in ascending powers of x, up to and including the term in x^3 . [5]
 - (iii) State the set of values of x for which the expansion in part (ii) is valid. [1]

4 Find the exact value of
$$\int_0^{\frac{1}{4}\pi} (1 + \sin x)^2 dx.$$
 [6]

5 (i) Show that the substitution $u = \sqrt{x}$ transforms $\int \frac{1}{x(1+\sqrt{x})} dx$ to $\int \frac{2}{u(1+u)} du$. [3]

(ii) Hence find the exact value of
$$\int_{1}^{9} \frac{1}{x(1+\sqrt{x})} dx.$$
 [5]

6 A curve has parametric equations

$$x = t^2 - 6t + 4$$
, $y = t - 3$.

Find

- (i) the coordinates of the point where the curve meets the *x*-axis, [2]
- (ii) the equation of the curve in cartesian form, giving your answer in a simple form without brackets, [2]
- (iii) the equation of the tangent to the curve at the point where t = 2, giving your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers. [5]
- 7 (i) Show that the straight line with equation $\mathbf{r} = \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix} + t \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix}$ meets the line passing through (9, 7, 5) and (7, 8, 2), and find the point of intersection of these lines. [6]

[4]

(ii) Find the acute angle between these lines.

- 8 The equation of a curve is $x^3 + y^3 = 6xy$.
 - (i) Find $\frac{dy}{dx}$ in terms of x and y. [4]
 - (ii) Show that the point $(2^{\frac{4}{3}}, 2^{\frac{5}{3}})$ lies on the curve and that $\frac{dy}{dx} = 0$ at this point. [4]
 - (iii) The point (a, a), where a > 0, lies on the curve. Find the value of a and the gradient of the curve at this point.
- 9 A liquid is being heated in an oven maintained at a constant temperature of 160 °C. It may be assumed that the rate of increase of the temperature of the liquid at any particular time *t* minutes is proportional to 160θ , where θ °C is the temperature of the liquid at that time.
 - (i) Write down a differential equation connecting θ and t. [2]

When the liquid was placed in the oven, its temperature was 20 °C and 5 minutes later its temperature had risen to 65 °C.

(ii) Find the temperature of the liquid, correct to the nearest degree, after another 5 minutes. [9]

4724 Core Mathematics 4

4724

1	Attempt to factorise numerator and denominator		M1	$\frac{A}{f(x)} + \frac{B}{g(x)}; fg = 6x^2 - 24x$		
	Any (part) factorisation of both num and denom		A1	Corres identity/cover-up		
	Final answer = $-\frac{5}{6x}$, $\frac{-5}{6x}$, $\frac{5}{-6x}$, $-\frac{5}{6}x^{-1}$ Not $-\frac{5}{6}x^{-1}$		A1			
			3			
2	Use parts with $u = x$, $dv = \sec^2 x$		M1	result $f(x) + /- \int g(x) dx$		
	Obtain correct result $x \tan x - \int \tan x dx$		A1	, Jev,		
	$\int \tan x \mathrm{d}x = k \ln \sec x \text{ or } k \ln \cot x$	s x, where $k = 1$ or -1	B1	or $k \ln \sec x $ or $k \ln \cos x $		
	Final answer = $x \tan x - \ln \sec x $	$+c \text{ or } x \tan x + \ln \cos x + c$	c A1			
			4	4		
3 (i)	$1 + \frac{1}{2} \cdot 2x + \frac{\frac{1}{2} \cdot -\frac{1}{2}}{2} \left(4x^2 \text{ or } 2x^2 \right) + \frac{\frac{1}{2} \cdot -\frac{1}{2} \cdot -\frac{3}{2}}{6} \left(8x^3 \text{ or } 2x^3 \right)$		M1			
	= 1 + x		B1			
	$\dots -\frac{1}{2}x^2 + \frac{1}{2}x^3$ (AE fract coeffs)		A1 (3) For both terms		
(ii)	$(1+x)^{-3} = 1 - 3x + 6x^2 - 10x^3$		B1 (or $(1+x)^3 = 1+3x+3x^2+x^3$		
	Either attempt at their (i) multip	lied by $(1+x)^{-3}$	M1	M1 or (i) long div by $(1+x)^3$		
	$1 - 2x \dots$	$\sqrt{1+(a-3)x}$	A1 t	f.t. (i) = $1 + ax + bx^2 + cx^3$		
	$\dots + \frac{5}{2}x^2\dots$	$\sqrt{(-3a+b+6)x^2}$	A1			
	$2x^3$	$\sqrt{(6a-3b+c-10)x^3}$	A1 (5) (AE fract.coeffs)		
(iii)	$-\frac{1}{2} < x < \frac{1}{2}$, or $ x < \frac{1}{2}$		B1 (1)		
			9			

4	Attempt to expand $(1 + \sin x)^2$ and integrate it	*M1	Minimum of $1 + \sin^2 x$
	Attempt to change $\sin^2 x$ into $f(\cos 2x)$	M1	
	Use $\sin^2 x = \frac{1}{2} (1 - \cos 2x)$	A1	dep M1 + M1
	Use $\int \cos 2x dx = \frac{1}{2} \sin 2x$	A1	dep M1 + M1
	Use limits correctly on an attempt at integration dep*	M1	Tolerate g $(\frac{1}{4}\pi) - 0$
	$\frac{3}{8}\pi - \sqrt{2} + \frac{7}{4} \text{AE}(3\text{-term})\text{F}$	A1	WW $1.51 \rightarrow M1 A0$
		6	
5 (i)	Attempt to connect du and dx, find $\frac{du}{dx}$ or $\frac{dx}{du}$	M1	But not e.g. $du = dx$
	Any correct relationship, however used, such as $dx = 2u du$	A1	or $\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2} x^{-\frac{1}{2}}$
	Subst with clear reduction (≥ 1 inter step) to AG	A1 (3) WWW
(ii)	Attempt partial fractions	M1	
	$\frac{2}{u} - \frac{2}{1+u}$	A1	
	$\sqrt{A \ln u + B \ln (1+u)}$	√A1	Based on $\frac{A}{u} + \frac{B}{1+u}$
	Attempt integ, change limits & use on $f(u)$	M1	or re-subst & use 1 & 9
	$\ln \frac{9}{4}$ AEexactF (e.g. 2 ln 3 –2 ln 4 + 2 ln 2)	A1 (5) Not involving ln 1
		8	

Mark Scheme

6	(i)	Solve $0 = t - 3$ & substinto $x = t^2 - 6t + 4$	M1	
		Obtain $x = -5$		(2) $(-5,0)$ need not be quoted
		N.B. If (ii) completed first, subst $y = 0$ into their cartesian	eqn	(M1) & find <i>x</i> (no f.t.) (A1)
	(ii)	Attempt to eliminate <i>t</i>	M1	
		Simplify to $x = y^2 - 5$ ISW	A1	(2)
	(iii)	Attempt to find $\frac{dy}{dx}$ or $\frac{dx}{dy}$ from cartes or para form	M1	Award anywhere in Que
		Obtain $\frac{dy}{dx} = \frac{1}{2t-6}$ or $\frac{1}{2y}$ or $(-)\frac{1}{2}(x+5)^{-\frac{1}{2}}$	A1	
		If $t = 2$, $x = -4$ and $y = -1$	B1	Awarded anywhere in (iii)
		Using their num (x, y) & their num $\frac{dy}{dx}$, find tgt eqn	M1	
		x + 2y + 6 = 0 AEF(without fractions) ISW	A1	(5)
			9	
7	(i)	Attempt direction vector between the 2 given points	M1	
		State eqn of line using format (\mathbf{r}) = (either end) + s (dir vec)	M1	<i>'s'</i> can be <i>'t'</i>
		Produce $2/3$ eqns containing t and s	M1	2 different parameters
		Solve giving $t = 3$, $s = -2$ or $2 \text{ or } -1 \text{ or } 1$	A1	
		Show consistency	B1	
		Point of intersection = $(5,9,-1)$	A1	(6)
	(ii)	Correct method for scalar product of 'any' 2 vectors	M1	Vectors from this question
		Correct method for magnitude of 'any' vector	M1	Vector from this question
		Use $\cos \theta = \frac{\mathbf{a}.\mathbf{b}}{ \mathbf{a} \mathbf{b} }$ for the correct 2 vectors $\begin{pmatrix} 1\\4\\-2 \end{pmatrix} \& \begin{pmatrix} 2\\-1\\3 \end{pmatrix}$	M1	Vects may be mults of dvs
		62.2 (62.188157) 1.09 (1.0853881)	A1	(4)
			10	

8	(i)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(y^{3}\right) = 3y^{2}\frac{\mathrm{d}y}{\mathrm{d}x}$	B1	
		Consider $\frac{d}{dx}(xy)$ as a product	M1	
		$= x \frac{\mathrm{d}y}{\mathrm{d}x} + y$	A1	Tolerate omission of '6'
		$\frac{dy}{dx} = \frac{6y - 3x^2}{3y^2 - 6x}$ ISW AEF	A1	(4)
	(ii)	$x^3 = 2^4$ or 16 and $y^3 = 2^5$ or 32	*B1	
		Satisfactory conclusion	dep* B1	AG
		Substitute $\left(2^{\frac{4}{3}}, 2^{\frac{5}{3}}\right)$ into their $\frac{dy}{dx}$	M1	or the numerator of $\frac{dy}{dx}$
		Show or use calc to demo that num = 0, ignore denon	n AG A1	(4)
	(iii)	Substitute (a, a) into eqn of curve	M1	& attempt to state ' $a = \dots$ '
		$a = 3$ only with clear ref to $a \neq 0$	A1	
		Substitute (3,3) or (their <i>a</i> , their <i>a</i>) into their $\frac{dy}{dx}$	M1	
		-1 only WWW	A1	(4) from (their <i>a</i> ,their <i>a</i>)
			12	
9	(i)	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \dots$	B1	
		$k(160-\theta)$	B1	(2) The 2 @ 'B1' are indep
	(ii)	Separate variables with $(160 - \theta)$ in denom; or invert	*M1	$\int \frac{1}{160 - \theta} \mathrm{d}\theta = \int k, \frac{1}{k}, 1 \mathrm{d}t$
		Indication that LHS = $\ln f(\theta)$	A1	If wrong ln, final $3@A = 0$
		RHS = kt or $\frac{1}{k}t$ or t (+ c)	A1	
		Subst. $t = 0, \theta = 20$ into equation containing 'c'	dep*M1	
		Subst $t = 5, \theta = 65$ into equation containing 'c' & 'k	dep*M1	
		$c = -\ln 140$ (-4.94) ISW	A1	
		$k = \frac{1}{5} \ln \frac{140}{95}$ (\$\approx 0.077\$ or 0.078\$) ISW	A1	
		Using their 'c' & 'k', subst $t = 10$ & evaluate θ	dep*M1	
		$\theta = 96(95.535714) \left(95\frac{15}{28}\right)$	Al	(9)

4724